Ancient fires enhance Amazon forest drought resistance

Author:

Vedovato Laura B.,Carvalho Lidiany C. S.,Aragão Luiz E. O. C.,Bird Michael,Phillips Oliver L.,Alvarez Patrícia,Barlow Jos,Bartholomew David C.,Berenguer Erika,Castro Wendeson,Ferreira Joice,França Filipe M.,Malhi Yadvinder,Marimon Beatriz,Marimon Júnior Ben Hur,Monteagudo Abel,Oliveira Edmar A.,Pereira Luciana O.,Pontes-Lopes Aline,Quesada Carlos A.,Silva Camila V. J.,Silva Espejo Javier E.,Silveira Marcos,Feldpausch Ted R.

Abstract

Drought and fire reduce productivity and increase tree mortality in tropical forests. Fires also produce pyrogenic carbon (PyC), which persists in situ for centuries to millennia, and represents a legacy of past fires, potentially improving soil fertility and water holding capacity and selecting for the survival and recruitment of certain tree life-history (or successional) strategies. We investigated whether PyC is correlated with physicochemical soil properties, wood density, aboveground carbon (AGC) dynamics and forest resistance to severe drought. To achieve our aim, we used an Amazon-wide, long-term plot network, in forests without known recent fires, integrating site-specific measures of forest dynamics, soil properties and a unique soil PyC concentration database. We found that forests with higher concentrations of soil PyC had both higher soil fertility and lower wood density. Soil PyC was not associated with AGC dynamics in non-drought years. However, during extreme drought events (10% driest years), forests with higher concentrations of soil PyC experienced lower reductions in AGC gains (woody growth and recruitment), with this drought-immunizing effect increasing with drought severity. Forests with a legacy of ancient fires are therefore more likely to continue to grow and recruit under increased drought severity. Forests with high soil PyC concentrations (third quartile) had 3.8% greater AGC gains under mean drought, but 33.7% greater under the most extreme drought than forests with low soil PyC concentrations (first quartile), offsetting losses of up to 0.68 Mg C ha–1yr–1 of AGC under extreme drought events. This suggests that ancient fires have legacy effects on current forest dynamics, by altering soil fertility and favoring tree species capable of continued growth and recruitment during droughts. Therefore, mature forest that experienced fires centuries or millennia ago may have greater resistance to current short-term droughts.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3