Potential Factors Canceling Interannual Cycles of Shoot Production in a Moso Bamboo (Phyllostachys pubescens) Stand

Author:

Lin Chuan-Ya,Miki Takeshi,Kume Tomonori

Abstract

Moso bamboo (Phyllostachys pubescens) forests are utilized for food, building materials, and carbon fixation in East Asia. Hence, understanding the factors that influence productivity is important. Long-term records of managed Moso bamboo forests have provided evidence for 2-year cycles of new shoot production. A widely accepted explanatory hypothesis is that the 2-year leaf life span and unequal proportions of newer and older leaves in bamboo stands are the cause of the 2-year shoot production cycle. However, 2-year cycles are not observed in all circumstances. If the 2-year leaf life span causes the biennial production cycle, why are the 2-year cycles of new shoot production not observed in some periods? By constructing an age-structured population growth model that considered the Moso bamboo leaf life span, this study aimed to clarify the possible mechanisms that could suppress the 2-year cycle of new shoot production. The simulation demonstrated that the 2-year cycle may readily disappear because of the contribution of considerable carbohydrates originating from photosynthesis in old leaves and in new leaves of zero-year-old culms, and from belowground carbon storage in roots and rhizomes. The results suggested that the contribution of photosynthesis in old leaves and in new leaves of zero-year-old culms may be overlooked at the population scale, and that belowground carbon storage in Moso bamboo rhizome systems might act as buffer to stabilize the year-to-year variations in new shoot production.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3