Altitudinal gradient drives significant changes in soil physico-chemical and eco-physiological properties of Rhododendron anthopogon: a case study from Himalaya

Author:

Mangral Zahid Ahmed,Islam Shahid Ul,Tariq Lubna,Kaur Sharanjeet,Ahmad Rameez,Malik Akhtar H.,Goel Shailendra,Baishya Ratul,Barik Saroj Kanta,Dar Tanvir Ul Hassan

Abstract

The best natural laboratories for studying the ecological responses of plants are high-altitude areas like the Himalaya, where many gradients coexist on a relatively small spatial scale. Here, we investigate the effect of soil physico-chemical and eco-physiological properties on the broadleaf evergreen woody shrub Rhododendron anthopogon D.Don along an altitudinal gradient in the Kashmir Himalaya. We collected leaf and soil samples for eco-physiological and soil physico-chemical analysis, respectively, at five different sites along an altitudinal gradient (3,220–3,908 m). Our results demonstrate a significant difference between soil physico-chemical and eco-physiological parameters along the altitudinal gradient. A significant correlation was observed between different studied parameters and altitude. Principal component analysis of studied soil physico-chemical and eco-physiological parameters revealed that all the sites were grouped into four clusters according to altitude, suggesting a more pronounced effect of altitude. Our findings showed that soil infiltration capacity increased with altitude, which would be helpful for the growth and development of R. anthopogon. We also observed significant variations in eco-physiological parameters, demonstrating their critical involvement in adapting R. anthopogon to the harsh environment of the alpine regions of Kashmir Himalaya. Therefore, the present study adds to our understanding that R. anthopogon has sufficient soil physico-chemical and eco-physiological plasticity, which should be favorable for its survival in future climates, offering an adaptive advantage and expanding its range shortly.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3