You Can Bend Me but Can’t Break Me: Vegetation Regeneration After Hurricane María Passed Over an Urban Coastal Wetland in Northeastern Puerto Rico

Author:

Hernández Elix,Cuevas Elvira,Pinto-Pacheco Solimar,Ortíz-Ramírez Gloria

Abstract

Tropical urban coastal wetland regeneration is complex. Wetland plant biodiversity varies due to past and present land use, nutrient inputs, hydrological conditions, and terrestrial/marine connectivity. The intensity of atmospheric disturbances, such as hurricanes, will determine these systems’ level of disturbance and regeneration capacity. On September 20, 2017, category 4 hurricane María passed over Puerto Rico, leaving behind a path of destruction across the entire island, especially in coastal ecosystems, from the combined effects of winds, severe storm surges, and urban runoff. Our question was: to what extent do human-influenced coastal urban wetlands regenerate after such a massive event. This study determines the spatio-temporal regeneration dynamics of plant cover and composition during the first 2 years after hurricane María in a coastal urban wetland, ciénaga Las Cucharillas, located in San Juan Bay. We assessed the distribution of plant functional types using small unmanned aerial vehicles (s-UAV) and monitored climate and environmental data (salinity, phreatic water levels, and precipitation). Wetland vegetation cover had a high recovery rate – 16 months after the hurricane, vegetation cover occupied 87% of the study area. We found a successional pattern of plant regeneration that seemed to be partly explained by the fast-slow continuum. Plants with high specific leaf area (SLA) colonized bare soil spaces first. Plant regeneration also varied according to changes in phreatic water conductivity and waterlogging. Isotopic analyses of plant species signaled high nutrient availability, increasing the system’s regeneration speed. After 2 years, the wetland’s plant cover and composition of functional plant types proved resilient to the initial hurricane effect and subsequent changes in conductivity and freshwater conditions. Further studies will expand how spatio-temporal conditions will affect long-term plant community dynamics.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3