MelSPPNET—A self-explainable recognition model for emerald ash borer vibrational signals

Author:

Jiang Weizheng,Chen Zhibo,Zhang Haiyan,Li Juhu

Abstract

IntroductionThis study aims to achieve early and reliable monitoring of wood-boring pests, which are often highly concealed, have long lag times, and cause significant damage to forests. Specifically, the research focuses on the larval feeding vibration signal of the emerald ash borer as a representative pest. Given the crucial importance of such pest monitoring for the protection of forestry resources, developing a method that can accurately identify and interpret their vibration signals is paramount.MethodsWe introduce MelSPPNET, a self-explaining model designed to extract prototypes from input vibration signals and obtain the most representative audio segments as the basis for model recognition. The study collected feeding vibration signals of emerald ash borer larvae using detectors, along with typical outdoor noises. The design of MelSPPNET considers both model accuracy and interpretability.ResultsExperimental results demonstrate that MelSPPNET compares favorably in accuracy with its similar non-interpretable counterparts, while providing interpretability that these networks lack. To evaluate the interpretability of the case-based self-explaining model, we designed an interpretability evaluation metric and proved that MelSPPNET exhibits good interpretability. This provides accurate and reliable technical support for the identification of emerald ash borer larvae.DiscussionWhile the work in this study is limited to one pest type, future experiments will focus on the applicability of this network in identifying other vibration signals. With further research and optimization, MelSPPNET has the potential to provide broader and deeper pest monitoring solutions for forestry resource protection. Additionally, this study demonstrates the potential of self-explaining models in the field of signal processing, offering new ideas and methods for addressing similar problems.

Publisher

Frontiers Media SA

Reference37 articles.

1. Learning and compressing: low-rank matrix factorization for deep neural network compression;Cai;Appl. Sci,2023

2. This looks like that: deep learning for interpretable image recognition;Chen;Adv. Neural Inf. Process. Syst,2019

3. Invasion of emerald ash borer agrilus planipennis and ash dieback pathogen hymenoscyphus fraxineus in ukraine—a concerted action;Davydenko;Forests,2022

4. Ai for radiographic covid-19 detection selects shortcuts over signal;DeGrave;Nat. Mach. Intell,2021

5. “Deformable protopnet: an interpretable image classifier using deformable prototypes,”;Donnelly;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3