Impact of conservation practices on soil quality and ecosystem services under diverse horticulture land use system

Author:

Rathore Avinash Chandra,Singh Charan,Jayaprakash J.,Gupta Anand Kumar,Doharey Vijay Kumar,Jinger Dinesh,Singh Deepak,Yadav Devideen,Barh Anupam,Islam Sadikul,Ghosh Avijit,Kadam Darshan,Paramesh Venkatesh,Jhajhria Abimanyu,Singhal Vibha,Pal Rama,Madhu M.

Abstract

The 20-year study investigated the effects of conservation practices (CPs) and farmers' practices (FPs) on various soil quality parameters, yield, and economics of horticultural land use systems. CPs demonstrated significant improvements in soil organic carbon (SOC), available nitrogen (N), phosphorus (P), and potassium (K), compared to FPs. Horticultural systems exhibited higher SOC and available N and P contents than FPs, with substantial variations among different fruit species. CPs also enhanced soil quality index, functional diversity, culturable microbial populations, enzyme activity, and soil microbial biomass carbon (SMBC) compared to FPs. It was observed that the SMBC values were 25.0–36.6% and 4.12–25.7% higher in 0–15 cm and 15–30 cm, respectively, under CPs compared to FPs for all the land use systems. In CPs, dehydrogenase activities (DHAs) in surface soils were 9.30 and 7.50 times higher under mango- and citrus-based horticultural systems compared to FPs. The CPs adopted in aonla, guava, mango, litchi, and citrus-based horticultural systems increased SOC by ~27.6, 32.6, 24.4, 26.8, and 22.0%, respectively, over FPs. Canopy spread, fruit yield, litter yield, and soil moisture were significantly higher in fruit-based horticultural systems under CPs. Economic viability analysis indicated higher net present values (NPVs), benefit-cost ratio (BCR), and shorter payback periods (PBPs) for horticultural land use systems under CPs. Principal component analysis (PCA) revealed that CPs had a more positive influence on soil parameters, particularly DHA, acid and alkali phosphatase activity, available N, P, and K contents, soil microbial load, and organic carbon. The maximum ecosystem services were contributed through mango-based land uses among all land uses. Mango-based horticultural systems exhibited the least impact from both CPs and FPs, while peach-based systems were most affected by CPs. Overall, the findings highlight the benefits of conservation practices in improving soil quality, microbial populations, enzyme activity, and crop productivity in horticultural systems.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3