Reduced growth sensitivity to water availability as potential indicator of drought-induced tree mortality risk in a Mediterranean Pinus sylvestris L. forest

Author:

Herrero Asier,González-Gascueña Raquel,González-Díaz Patricia,Ruiz-Benito Paloma,Andivia Enrique

Abstract

IntroductionDrought-associated tree mortality has been increasing worldwide since the last decades, impacting structure and functioning of forest ecosystems, with implications for energy, carbon and water fluxes. However, the understanding of the individual vulnerability to drought-induced mortality is still limited.MethodsWe aimed to identify the factors that triggered the mortality of the widely distributed Pinus sylvestris L. in an extensive forest area in central Spain. We compared radial growth patterns in pairs of alive and recently dead individuals that co-occur in close proximity and present similar age and size, thereby isolating the effects of size and environment from the mortality process. Temporal dynamics of growth, growth synchrony, and growth sensitivity to water availability (precipitation minus potential evapotranspiration) were compared between alive and recently dead trees.Results and discussionOver the last 50 years, although we did not detect significant differences in growth between alive and dead trees, an increase in the growth synchrony and sensitivity to water availability (i.e. slope of the climatic water balance in the growth model) was observed in all trees as drought intensity increased. 20 years before mortality, dead individuals showed lower growth synchrony and growth sensitivity to water availability than alive ones, without significant differences in growth. Recorded reduction in growth synchrony and growth sensitivity to water availability in dead trees suggests a decoupling between tree growth and climate, which could increase the risk of hydraulic failure and/or carbon starvation under increasingly arid conditions. Thus, the use of reduced growth sensitivity to water availability as potential early-warning signal of tree mortality, together with reduced growth synchrony, should be further explored, particularly in pine species in seasonally dry areas.

Funder

University of Alcalá

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3