Bacteria Respond Stronger Than Fungi Across a Steep Wood Ash-Driven pH Gradient

Author:

Cruz-Paredes Carla,Bang-Andreasen Toke,Christensen Søren,Ekelund Flemming,Frøslev Tobias G.,Jacobsen Carsten Suhr,Johansen Jesper Liengaard,Mortensen Louise H.,Rønn Regin,Vestergård Mette,Kjøller Rasmus

Abstract

Soil pH is probably the most important variable explaining bacterial richness and community composition locally as well as globally. In contrast, pH effects on fungi appear to be less pronounced, but also less studied. Here we analyze the community responses of bacteria and fungi in parallel over a local extreme pH gradient ranging from 4 to 8. We established the pH gradient by applying strongly alkaline wood ash in dosages of 0, 3, 9, 15, 30, and 90 t ha–1 to replicated plots in a Picea abies plantation and assessed bacterial and fungal community composition using high throughput amplicon sequencing 1 year after ash application. At the same time, the experiment investigated if returning wood ash to plantation forests pose any immediate threats for the microbial communities. Among the measured environmental parameters, pH was by far the major driver of the microbial communities, however, bacterial and fungal communities responded differently to the pH increment. Whereas both bacterial and fungal communities showed directional changes correlated with the wood ash-induced increase in pH, the bacterial community displayed large changes at wood ash dosages of 9 and 15 t ha–1 while only higher dosages (>30 t ha–1) significantly changed the fungal community. The results confirm that fungi are less sensitive to pH changes than bacteria but also that fertilizing plantation forests with wood ash, viewed through the lens of microbial community changes, is a safe management at standard dosages (typically 3 t ha–1).

Funder

Strategiske Forskningsråd

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3