Wind Speed Controls Forest Structure in a Subtropical Forest Exposed to Cyclones: A Case Study Using an Individual-Based Model

Author:

Rau E-Ping,Gardiner Barry A.,Fischer Fabian Jörg,Maréchaux Isabelle,Joetzjer Emilie,Sun I-Fang,Chave Jérôme

Abstract

Extreme wind blowdown events can significantly modify the structure and composition of forests, and the predicted shift in tropical cyclone regimes due to climate change could strongly impact forests across the tropics. In this study, we coupled an individual-based and spatially-explicit forest dynamics model (TROLL) with a mechanistic model estimating wind damage as a function of tree size, traits, and allometry (ForestGALES). We assimilated floristic trait data and climate data from a subtropical forest site in Taiwan to explore the effect of wind regimes on forest properties. We found that the average canopy height and biomass stocks decreased as wind disturbance strength increased, but biomass stocks showed a nonlinear response. Above a wind intensity threshold, both canopy height and biomass drastically decreased to near-zero, exhibiting a transition to a non-forest state. Wind intensity strongly regulated wind impact, but varying wind frequency did not cause discernible effects. The implementation of within-stand topographic heterogeneity led to weak effects on within-stand forest structure heterogeneity at the study site. In conclusion, the intensity of wind disturbances can potentially greatly impact forest structure by modifying mortality. Individual-based modeling provides a framework in which to investigate the impact of wind regimes on mortality, other factors influencing wind-induced tree mortality, as well as interaction between wind and other forms of forest disturbance and human land use legacy.

Funder

Agence Nationale de la Recherche

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3