Physiological and biochemical indicators in Norway spruces freshly infested by Ips typographus: potential for early detection methods

Author:

Stříbrská Barbora,Hradecký Jaromír,Čepl Jaroslav,Modlinger Roman,Tomášková Ivana,Jirošová Anna

Abstract

IntoductionThe bark beetle Ips typographus currently represents the primary pest of Norway spruce (Picea abies) in Central Europe. Early detection and timely salvage cutting of bark beetle-infested trees are functional management strategies for controlling bark beetle outbreaks. However, alternative detection methods are currently being developed, and possible indicators of bark beetle infestation can be assessed through changes in the physiological, biochemical, and beetle-acceptance characteristics of trees.MethodThis study monitored infested and non-infested Norway spruce trees before and 3 weeks after Ips typographus natural attack. Permanently installed sensors recorded physiological features, such as sap flow, tree stem increment, bark surface temperature, and soil water potential, to monitor water availability. Defensive metabolism characteristics, beetle host acceptance, and attractiveness to trees were monitored discretely several times per season. The forest stand that was later attacked by bark beetles had lower water availability during the 2018–2020 seasons compared to the non-attacked stands.ResultsAfter the attack, sap flow and tree stem increment were significantly lower in infested trees than in intact ones, and bark surface temperature moderately increased, even when measured in the inner forest stand from the shadowed side. Infested trees respond to attacks with a surge in monoterpene emissions. In addition, freshly infested trees were more accepted by males in the no-choice bioassays, and a significantly higher number of beetles were caught in passive traps in the first week of infestation.ConclusionThe most promising characteristics for early detection methods of bark beetle-infested trees include tree bark temperature measured only in certain meteorological conditions, elevated monoterpene emissions, and significantly high catches in passive traps.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3