Provenance Differences in Water-Use Efficiency Among Sessile Oak Populations Grown in a Mesic Common Garden

Author:

Rabarijaona Arivoara,Ponton Stéphane,Bert Didier,Ducousso Alexis,Richard Béatrice,Levillain Joseph,Brendel Oliver

Abstract

ContextAs a widespread species, sessile oak (Quercus petraea) populations occupy a wide range of ecological conditions, with large gradients of soil water availability. Drought acclimation involves a plastic increase in water-use efficiency (WUE), a trait that is easily measured using the carbon isotope composition (δ13C). However, the question remains whether WUE is an adaptive trait that impacts the fitness of trees in natural environments.Objectives and MethodsTo investigate whether WUE was a drought-adaptive trait, we studied a sample of 600 trees originating from 16 provenances, grown for 21 years in a common garden. Intrinsic WUE (WUEi), estimated from tree ring δ13C, was compared among and within populations for three climatically contrasted years. The adaptive character of WUEi was evaluated by relating population mean WUEi, as well as its plasticity to drought, to the pedoclimatic conditions of their provenance sites. The contribution of WUEi to tree and population fitness was finally assessed from the relationship between WUEi and tree radial growth (GI).ResultsSignificant differences in WUEi were found among populations but a much larger variability was observed within than among populations. The population WUEi of the juvenile oak trees growing in the relatively mesic conditions of the common garden showed no relationship with a modeled water deficit index for the provenance sites. However, a higher population WUEi plasticity to severe drought was related to a higher proportion of silt and carbon and a lower proportion of sand in the soil of the provenance sites. In response to severe drought, populations with a higher increase in WUEi showed a lower decrease in GI. Populations with lower GI reduction were from sites with higher vapor pressure deficit in May–July (VPD). For the wet year only, populations with a higher WUEi also had a higher GI.ConclusionThe correlations observed at the common garden site between (i) population means of WUEi plasticity to drought and soil texture of the provenance sites, and (ii) GI plasticity to drought and VPD, suggested a local adaptation of sessile oak.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Reference113 articles.

1. Time to get moving: assisted gene flow of forest trees.;Aitken;Evol. Appl.,2016

2. Genetic variation in seedling water-use efficiency as estimated by carbon isotope ratios and its relationship to sapling growth in douglas-fir.;Aitken;For. Genet.,1995

3. Adaptation, migration or extirpation: climate change outcomes for tree populations.;Aitken;Evol. Appl.,2008

4. Variation of the water-retention properties of soils: validity of class-pedotransfer functions.;Al Majou;Comptes Rendus Geosci.,2007

5. In situ estimation of genetic variation of functional and ecological traits in Quercus petraea and Q. robur.;Alexandre;Tree Genet. Genomes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3