Deciphering the biological processes in root hairs required for N-self-fertilizing cereals

Author:

Pree Simon,Malekian Babak,Sandén Hans,Nicolaisen Mogens,Weckwerth Wolfram,Vestergård Mette,Retzer Katarzyna

Abstract

The need for increasing for crop productivity leads to a higher usage of synthetic fertilizers, which has tremendous effects on the environment. Nitrogen (N) is a crucial plant macronutrient, but the production of synthetic N fertilizer and its leakage into aquatic systems represent sources of environmental damage. To reduce the usage of synthetic fertilizers, current studies addressed innovative approaches to develop “N-self-fertilizing” crops that can utilize atmospheric nitrogen through enhanced interaction with the root microbiome. In this review we discuss recently obtained knowledge about the role of root hairs and their functions in root exudate secretion for plant-microbiome interactions. Recent studies have shown the beneficial impact of root hairs and exudate secretion on the recruitment of N2 fixing bacteria. Root hair plays a crucial role in shaping the rhizosphere, and first insights into the biological processes that underpin root hair formation and function in relation to microbiome interaction were gained. We summarize to which extent this knowledge can be applied to develop cereals with an enhanced ability to benefit from N2 fixing bacteria. Finally, we describe non-destructive methods and their limitations to study root hair growth directly in the field under natural growth conditions.

Funder

HORIZON EUROPE Framework Programme

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3