A framework for identification and classification of liver diseases based on machine learning algorithms

Author:

Ding Huanfei,Fawad Muhammad,Xu Xiaolin,Hu Bowen

Abstract

Hepatocellular carcinoma (HCC) is one of the most commonly seen liver disease. Most of HCC patients are diagnosed as Hepatitis B related cirrhosis simultaneously, especially in Asian countries. HCC is the fifth most common cancer and the second most common cause of cancer-related death in the World. HCC incidence rates have been rising in the past 3 decades, and it is expected to be doubled by 2030, if there is no effective means for its early diagnosis and management. The improvement of patient’s care, research, and policy is significantly based on accurate medical diagnosis, especially for malignant tumor patients. However, sometimes it is really difficult to get access to advanced and expensive diagnostic tools such as computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET-CT)., especially for people who resides in poverty-stricken area. Therefore, experts are searching for a framework for predicting of early liver diseases based on basic and simple examinations such as biochemical and routine blood tests, which are easily accessible all around the World. Disease identification and classification has been significantly enhanced by using artificial intelligence (AI) and machine learning (ML) in conjunction with clinical data. The goal of this research is to extract the most significant risk factors or clinical parameters for liver diseases in 525 patients based on clinical experience using machine learning algorithms, such as regularized regression (RR), logistic regression (LR), random forest (RF), decision tree (DT), and extreme gradient boosting (XGBoost). The results showed that RF classier had the best performance (accuracy = 0.762, recall = 0.843, F1-score = 0.775, and AUC = 0.999) among the five ML algorithms. And the important orders of 14 significant risk factors are as follows: Total bilirubin, gamma-glutamyl transferase (GGT), direct bilirubin, hemoglobin, age, platelet, alkaline phosphatase (ALP), aspartate transaminase (AST), creatinine, alanine aminotransferase (ALT), cholesterol, albumin, urea nitrogen, and white blood cells. ML classifiers might aid medical organizations in the early detection and classification of liver disease, which would be beneficial in low-income regions, and the relevance of risk factors would be helpful in the prevention and treatment of liver disease patients.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3