Deriving Pulmonary Ventilation Images From Clinical 4D-CBCT Using a Deep Learning-Based Model

Author:

Liu Zhiqiang,Tian Yuan,Miao Junjie,Men Kuo,Wang Wenqing,Wang Xin,Zhang Tao,Bi Nan,Dai Jianrong

Abstract

PurposeThe current algorithms for measuring ventilation images from 4D cone-beam computed tomography (CBCT) are affected by the accuracy of deformable image registration (DIR). This study proposes a new deep learning (DL) method that does not rely on DIR to derive ventilation images from 4D-CBCT (CBCT-VI), which was validated with the gold-standard single-photon emission-computed tomography ventilation image (SPECT-VI).Materials and MethodsThis study consists of 4D-CBCT and 99mTc-Technegas SPECT/CT scans of 28 esophagus or lung cancer patients. The scans were rigidly registered for each patient. Using these data, CBCT-VI was derived using a deep learning-based model. Two types of model input data are studied, namely, (a) 10 phases of 4D-CBCT and (b) two phases of peak-exhalation and peak-inhalation of 4D-CBCT. A sevenfold cross-validation was applied to train and evaluate the model. The DIR-dependent methods (density-change-based and Jacobian-based methods) were used to measure the CBCT-VIs for comparison. The correlation was calculated between each CBCT-VI and SPECT-VI using voxel-wise Spearman’s correlation. The ventilation images were divided into high, medium, and low functional lung regions. The similarity of different functional lung regions between SPECT-VI and each CBCT-VI was evaluated using the dice similarity coefficient (DSC). One-factor ANONA model was used for statistical analysis of the averaged DSC for the different methods of generating ventilation images.ResultsThe correlation values were 0.02 ± 0.10, 0.02 ± 0.09, and 0.65 ± 0.13/0.65 ± 0.15, and the averaged DSC values were 0.34 ± 0.04, 0.34 ± 0.03, and 0.59 ± 0.08/0.58 ± 0.09 for the density change, Jacobian, and deep learning methods, respectively. The strongest correlation and the highest similarity with SPECT-VI were observed for the deep learning method compared to the density change and Jacobian methods.ConclusionThe results showed that the deep learning method improved the accuracy of correlation and similarity significantly, and the derived CBCT-VIs have the potential to monitor the lung function dynamic changes during radiotherapy.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3