Author:
Zang Shiming,Jiang Cuiping,Zhang Lele,Fu Jingjing,Meng Qingle,Wu Wenyu,Shao Guoqiang,Sun Hongbin,Jia Ruipeng,Wang Feng
Abstract
ObjectivesTo explore the feasibility and importance of deep learning (DL) based on 68Ga-prostate-specific membrane antigen (PSMA)-11 PET/CT in predicting pathological upgrading from biopsy to radical prostatectomy (RP) in patients with prostate cancer (PCa).MethodsIn this retrospective study, all patients underwent 68Ga-PSMA-11 PET/CT, transrectal ultrasound (TRUS)-guided systematic biopsy, and RP for PCa sequentially between January 2017 and December 2022. Two DL models (three-dimensional [3D] ResNet-18 and 3D DenseNet-121) based on 68Ga-PSMA-11 PET and support vector machine (SVM) models integrating clinical data with DL signature were constructed. The model performance was evaluated using area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity.ResultsOf 109 patients, 87 (44 upgrading, 43 non-upgrading) were included in the training set and 22 (11 upgrading, 11 non-upgrading) in the test set. The combined SVM model, incorporating clinical features and signature of 3D ResNet-18 model, demonstrated satisfactory prediction in the test set with an AUC value of 0.628 (95% confidence interval [CI]: 0.365, 0.891) and accuracy of 0.727 (95% CI: 0.498, 0.893).ConclusionA DL method based on 68Ga-PSMA-11 PET may have a role in predicting pathological upgrading from biopsy to RP in patients with PCa.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献