Reducing CSF complications by a recycled Hadad’s flap combined with autologous mucosa in secondary endoscope transsphenoidal surgery

Author:

Wang Runfeng,Zhou Gaoyang,Wang Jin,Ma Bo,Wang Ping,Gao Guodong,Sun Shukai,Zhang Zhiguo

Abstract

BackgroundTranssphenoidal secondary operations are a minority but not a rare occurrence. How to viably prevent cerebral fluid (CSF)-related complications and confine surgery-caused injury in secondary surgery as minimally as possible is a huge challenge. This article shares our solution of recycling a prior Hadad-Bassagasteguy flap (HBF) along with a using small piece of free autologous mucosa to reconstruct the skull base.MethodsOf 69 patients, fitted criteria were assigned into 2 different groups: a recycled HBF incorporated with an autologous free mucosa and a recycled HBF incorporated with an artificial dura to rebuild the skull base in secondary transsphenoidal surgery. The postoperative morbidities of pseudomeningocele, CSF leakage and meningitis were recorded and analyzed.ResultsA recycled HBF incorporated with an autologous mucosa is capable of reducing CSF complications compared to that of the matched group, particularly decreasing the morbidity of meningitis in secondary transsphenoidal surgery. Diabetes mellitus, craniopharyngioma, chordoma and the utilization of artificial dura were independent risk factors for CSF complications in secondary transsphenoidal surgery through univariate and multivariate logistic regression. In addition, diabetes mellitus and artificial dura are more likely to induce CSF leakage and meningitis. Patients suffering from craniopharyngioma are more susceptible to meningitis. Chordoma indiscriminately increased the risk of each CSF complication.ConclusionA recycled HBF incorporated with an autologous mucosa is reliable for reconstructing the skull base in secondary transsphenoidal surgery, especially for patients simultaneously suffering from diabetes mellitus and central skull base tumors.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3