XGBG: A Novel Method for Identifying Ovarian Carcinoma Susceptible Genes Based on Deep Learning

Author:

Sun Ke Feng,Sun Li Min,Zhou Dong,Chen Ying Ying,Hao Xi Wen,Liu Hong Ruo,Liu Xin,Chen Jing Jing

Abstract

Ovarian carcinomas (OCs) represent a heterogeneous group of neoplasms consisting of several entities with pathogenesis, molecular profiles, multiple risk factors, and outcomes. OC has been regarded as the most lethal cancer among women all around the world. There are at least five main types of OCs classified by the fifth edition of the World Health Organization of tumors: high-/low-grade serous carcinoma, mucinous carcinoma, clear cell carcinoma, and endometrioid carcinoma. With the improved knowledge of genome-wide association study (GWAS) and expression quantitative trait locus (eQTL) analyses, the knowledge of genomic landscape of complex diseases has been uncovered in large measure. Moreover, pathway analyses also play an important role in exploring the underlying mechanism of complex diseases by providing curated pathway models and information about molecular dynamics and cellular processes. To investigate OCs deeper, we introduced a novel disease susceptible gene prediction method, XGBG, which could be used in identifying OC-related genes based on different omics data and deep learning methods. We first employed the graph convolutional network (GCN) to reconstruct the gene features based on both gene feature and network topological structure. Then, a boosting method is utilized to predict OC susceptible genes. As a result, our model achieved a high AUC of 0.7541 and an AUPR of 0.8051, which indicates the effectiveness of the XGPG. Based on the newly predicted OC susceptible genes, we gathered and researched related literatures to provide strong support to the results, which may help in understanding the pathogenesis and mechanisms of the disease.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3