A Nomogram for Preoperatively Predicting the Ki-67 Index of a Pituitary Tumor: A Retrospective Cohort Study

Author:

Cai Xiangming,Zhu Junhao,Yang Jin,Tang Chao,Yuan Feng,Cong Zixiang,Ma Chiyuan

Abstract

BackgroundThe Ki-67 index is an indicator of proliferation and aggressive behavior in pituitary adenomas (PAs). This study aims to develop and validate a predictive nomogram for forecasting Ki-67 index levels preoperatively in PAs.MethodsA total of 439 patients with PAs underwent PA resection at the Department of Neurosurgery in Jinling Hospital between January 2018 and October 2020; they were enrolled in this retrospective study and were classified randomly into a training cohort (n = 300) and a validation cohort (n = 139). A range of clinical, radiological, and laboratory characteristics were collected. The Ki-67 index was classified into the low Ki-67 index (<3%) and the high Ki-67 index (≥3%). Least absolute shrinkage and selection operator algorithm and uni- and multivariate logistic regression analyses were applied to identify independent risk factors associated with Ki-67. A nomogram was constructed to visualize these risk factors. The receiver operation characteristic curve and calibration curve were computed to evaluate the predictive performance of the nomogram model.ResultsAge, primary-recurrence subtype, maximum dimension, and prolactin were included in the nomogram model. The areas under the curve (AUCs) of the nomogram model were 0.694 in the training cohort and 0.658 in the validation cohort. A well-fitted calibration curve was also generated for the nomogram model. A subgroup analysis revealed stable predictive performance for the nomogram model. A correlation analysis revealed that age (R = −0.23; p < 0.01), maximum dimension (R = 0.17; p < 0.01), and prolactin (R = 0.16; p < 0.01) were all significantly correlated with the Ki-67 index level.ConclusionsAge, primary-recurrence subtype, maximum dimension, and prolactin are independent predictors for the Ki-67 index level. The current study provides a novel and feasible nomogram, which can further assist neurosurgeons to develop better, more individualized treatment strategies for patients with PAs by predicting the Ki-67 index level preoperatively.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3