Expanding the molecular spectrum of tenosynovial giant cell tumors

Author:

Gauduchon Thibault,Vanacker Helene,Pissaloux Daniel,Cassier Philippe,Dufresne Armelle,Karanian Marie,Meurgey Alexandra,Bouhamama Amine,Gouin François,Ray-Coquard Isabelle,Blay Jean-Yves,Tirode Franck,Brahmi Mehdi

Abstract

BackgroundWhile great advances in clinical and pathological description of tenosynovial giant cell tumors (TGCT) have been made, TGCT molecular heterogeneity represents an ongoing challenge. The canonical oncogenic fusion CSF1::COL6A3 is not systematically observed, suggesting that other oncogenic mechanisms are involved in tumorigenesis. This study aims to explore by RNA sequencing a retrospective series of tumors diagnosed as TGCT, in order to provide a better description of their molecular landscape and to correlate molecular features with clinical data.MethodsWe analyzed clinicopathological data and performed whole-exome RNA sequencing on 41 TGCT samples.ResultsRNAseq analysis showed significant higher CSF1 and CSF1-R expression than a control panel of 2642 solid tumors. RNA sequencing revealed fusion transcripts in 14 patients including 6 not involving CSF1 and some previously unreported fusions. Unsupervised clustering on the expression profiles issued from this series suggested two distinct subgroups: one composed of various molecular subtypes including CSF1 and FN1 rearranged samples and one composed of four tumors harboring an HMGA2::NCOR2 fusion, suggesting distinct tumor entities. Overall, 15 patients received at least one systemic anti-CSF1R treatment and clinical improvement was observed in 11 patients, including patients from both clusters.DiscussionThis study reported molecular heterogeneity in TGCT, contrasting with the clinical and pathological homogeneity and the ubiquitous high CSF1 and CSF1R expression levels. Whether molecular diversity may impact the efficacy of systemic treatments needs to be further investigated.

Funder

Institut National Du Cancer

Fondation ARC pour la Recherche sur le Cancer

LabEx DEvweCAN

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3