Genetic variants in the calcium signaling pathway participate in the pathogenesis of colorectal cancer through the tumor microenvironment

Author:

Wu Jing-Yu,Shao Yu,Huang Chang-Zhi,Wang Zhen-Ling,Zhang Hong-Qiang,Fu Zan

Abstract

BackgroundCancer risk is influenced by calcium signaling in intracellular and intercellular signaling pathways. However, the relationship between the calcium signaling pathway and colorectal cancer risk remains unknown. We aim to evaluate the role of genetic variants in calcium signaling pathway genes in colorectal cancer risk through the tumor microenvironment.MethodsAn analysis of genetic variants in the calcium signaling pathway was conducted using a case-control study that included 1150 colorectal cancer patients and 1342 non-cancer patients. Using the regression model, we assessed whether single-nucleotide polymorphisms (SNPs) increase the risk of colorectal cancer. We also performed a dual luciferase reporter gene assay using HCT116 cell lines and DLD1 cell lines to demonstrate the regulatory relationship between SNP and candidate risk gene. We evaluated the expression of candidate risk gene in different populations. In addition, we also evaluated candidate risk gene and 22 immune cells correlation studies.ResultsThere was a significant association between the PDE1C rs12538364 T allele and colorectal cancer risk [odds ratio (OR) = 1.57, 95% confidence interval (CI) = 1.30 – 1.90, P = 3.07 × 10–6, PFDR = 0.004]. Mutation of intron region rs1538364 C to T locus reduces promoter activity of PDE1C in DLD1 and HCT116 cell lines (P < 0.05). We identified that PDE1C is significantly down-regulated in colorectal cancer, closely associated with 22 immune cells. Finally, we found that PDE1C could be the biomarker for individual immunotherapy of colorectal cancer.ConclusionAccording to our findings, PDE1C may be a key factor contributing to colorectal cancer, thus improving individual immunotherapy for the disease. The potential mechanism by which polymorphisms in the calcium signaling pathway genes may participate in the pathogenesis of colorectal cancer through the tumor microenvironment.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3