A novel diagnostic model for differentiation of lung metastasis from primary lung cancer in patients with colorectal cancer

Author:

Guo Rui,Yan Shi,Wang Fei,Su Hua,Xie Qing,Zhao Wei,Yang Zhi,Li Nan,Yu Jiangyuan

Abstract

ObjectiveThis study aimed to evaluate the 18F-FDG PET/CT in differentiating lung metastasis(LM) from primary lung cancer(LC) in patients with colorectal cancer (CRC).MethodsA total of 120 CRC patients (80 male, 40 female) who underwent 18F-FDG PET/CT were included. The diagnosis of primary lung cancer or lung metastasis was based on histopathology The patients were divided into a training cohort and a validation cohort randomized 1:1. Independent risk factors were extracted through the clinical information and 18F-FDG PET/CT imaging characteristics of patients in the validation cohort, and then a diagnostic model was constructed and a nomograms was made. ROC curve, calibration curve, cutoff, sensitivity, specificity, and accuracy were used to evaluate the prediction performance of the diagnostic model.ResultsOne hundred and twenty Indeterminate lung lesions (ILLs) (77 lung metastasis, 43 primary lung cancer) were analyzed. No significant difference in clinical characteristics and imaging features between the training and the validation cohorts (P > 0. 05). Using uni-/multivariate analysis, pleural tags and contour were identified as independent predictors. These independent predictors were used to establish a diagnostic model with areas under the receiver operating characteristic curves (AUCs) of 0.92 and 0.89 in the primary and validation cohorts, respectively. The accuracy rate of the diagnostic model for differentiating LM from LC were higher than that of subjective diagnosis (P < 0.05).ConclusionsPleural tags and contour were identified as independent predictors. The diagnostic model of ILLs in patients with CRC could help differentiate between LM and LC.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3