MK591 (Quiflapon), a 5-lipoxygenase inhibitor, kills pancreatic cancer cells via downregulation of protein kinase C-epsilon

Author:

Monga Jitender,Ghosh Ritisha,Guddeti Rohith,Chitale Dhananjay,Khan Gazala,Ghosh Jagadananda

Abstract

IntroductionPancreatic tumors and cell lines derived from them exhibit elevated expression of 5-lipoxygenase (5-Lox), whereas non-tumor glands or normal cells do not exhibit this overexpression. Arachidonic acid stimulates pancreatic cancer cell growth via metabolic conversion through the 5-Lox pathway, and inhibition of 5-Lox activity decreases the viability of pancreatic cancer cells. However, the downstream signaling mechanisms through which 5-Lox exerts its effects on the survival of pancreatic cancer cells remain to be elucidated.MethodsThe effects of 5-Lox inhibition on cell proliferation, apoptosis, and invasive potential were investigated in pancreatic cancer cells. The protein expression was analyzed by Western blot. Apoptosis was analyzed by Annexin-V binding assay and by detecting the degradation of chromatin-DNA to nucleosomal fragments. The protein kinase C-epsilon (PKCε) activity was measured by an immunoprecipitation-kinase assay. The in vivo effects of MK591 were evaluated in pancreatic tumor xenograft model.ResultsMK591, a specific inhibitor of 5-Lox activity, killed pancreatic cancer cells via induction of apoptosis, involving externalization of phosphatidylserine, cleavage of PARP (poly-ADP ribose polymerase) and degradation of chromatin DNA to nucleosomes. MK591 effectively blocked in vitro invasion and soft-agar colony formation by pancreatic cancer cells and decreased pancreatic tumor growth in nude mice xenografts. Furthermore, inhibition of 5-Lox downregulated K-Ras and inhibited phosphorylation of c-Raf and ERKs. Interestingly, 5-Lox inhibition induced apoptosis in pancreatic cancer cells without the inhibition of Akt but the protein level of PKCε was dramatically downregulated. Furthermore, inhibition of 5-Lox decreased the phosphorylation of Stat3 at Serine-727. Pre-treatment of pancreatic cancer cells with peptide activators of PKCε prevented apoptosis induced by 5-Lox inhibition, suggesting that the mechanism by which 5-Lox inhibition causes cell death in pancreatic cancer involves downregulation of PKCε. The combination of low doses of MK591 and gemcitabine synergistically reduced the oncogenic phenotype and killed pancreatic cancer cells by inducing apoptosis.DiscussionThese findings indicate that inhibition of 5-Lox interrupts an Akt-independent, PKCε-dependent survival mechanism in pancreatic cancer cells and suggest that metabolism of arachidonic acid through the 5-Lox pathway plays an integral part in the survival of pancreatic cancer cells via signaling through PKCε, an oncogenic, pro-survival serine/threonine kinase.

Publisher

Frontiers Media SA

Reference65 articles.

1. Cancer statistics, 2023;Siegel;CA Cancer J Clin,2023

2. Pancreatic cancer;Kleeff;Nat Rev Dis Primers,2016

3. Molecular pathobiology of pancreatic adenocarcinoma;Mangray;Front Biosci,1998

4. Pancreatic cancer;Maitra;Annu Rev Pathol,2008

5. High-throughput oncogene mutation profiling in human cancer;Thomas;Nat Genet,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3