A scientometric analysis of research trends on targeting mTOR in breast cancer from 2012 to 2022

Author:

Zhang Xizhou,Wu Jinyao,Yang Qiuping,Tian Huiting,Chen Lingzhi,Zheng Daitian,Ji Zeqi,Cai Jiehui,Chen Yexi,Li Zhiyang

Abstract

Over the past decade, thousands of articles have been published on the mechanistic target of rapamycin (mTOR) and its role in breast cancer. However, the variability and heterogeneity of academic data may impact the acquisition of published research information. Due to the large number, heterogeneity, and varying quality of publications related to mTOR and breast cancer, sorting out the present state of the research in this area is critical for both researchers and clinicians. Therefore, scientometric techniques and visualization tools were employed to analyze the large number of bibliographic metadata related to the research area of mTOR and breast cancer. The features of relevant publications were searched from 2012 to 2022 to evaluate the present status of research and the evolution of research hotspots in this particular field. Web of Science was utilized to extract all relevant publications from 2012 to 2022. Subsequently, Biblioshiny and VOSviewer were utilized to obtain data on the most productive countries, authors, and institutions, annual publications and citations, the most influential journals and articles, and the most frequently occurring keywords. In total, 1,471 publications were retrieved, comprising 1,167 original articles and 304 reviews. There was a significant rise in publications between 2015 and 2018, followed by a sharp decline in 2019 and a rebound since then. The publication with the highest number of citations was a 2012 review authored by Baselga et al. The United States had the highest number of publications, citations and connections among all countries. Oncotarget had the highest number of published articles among all the journals, and José Baselga had the strongest links with other authors. Excluding the search topics, the most frequently used words were “expression” (n = 297), “growth” (n = 228), “activation” (n = 223), “pathway” (n = 205), and “apoptosis” (n = 195). mTOR is crucially involved in breast cancer pathogenesis, but its exact mechanism of action remains controversial and warrants further investigation. The scientometric analysis provides a distinct overview of the existing state of research and highlights the topical issues that deserve further exploration.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3