A hybrid breast cancer classification algorithm based on meta-learning and artificial neural networks

Author:

Han Luyao,Yin Zhixiang

Abstract

The incidence of breast cancer in women has surpassed that of lung cancer as the world’s leading new cancer case. Regular screening and measures become an effective way to prevent breast cancer and also provide a good foundation for later treatment. Women should receive regular checkups in the hospital after reaching a certain age. The use of computer-aided technology can improve the accuracy and efficiency of physicians’ decision-making. Data pre-processing is required before data analysis, and 16 features are selected using a correlation-based feature selection method. In this paper, meta-learning and Artificial Neural Networks (ANN) are combined to create a hybrid algorithm. The proposed hybrid algorithm for predicting breast cancer was attempted to achieve 98.74% accuracy and 98.02% F1-score by creating a combination of various meta-learning models whose output was used as input features for creating ANN models. Therefore, the hybrid algorithm proposed in this paper can obtain better prediction results than a single model.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Breast Cancer Detection by Prototypical Networks using Few Shot Learning;2024 5th International Conference for Emerging Technology (INCET);2024-05-24

2. Breast Cancer Data Classification Using Cluster Based Ensemble Machine Learning;2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE);2024-02-16

3. Feature Selection Techniques on Breast Cancer Classification Using Fine Needle Aspiration Features: A Comparative Study;Advances in Visual Informatics;2023-10-20

4. Improved bald eagle search optimization with entropy-based deep feature fusion model for breast cancer diagnosis on digital mammograms;Multimedia Tools and Applications;2023-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3