Development and validation of a deep learning model for breast lesion segmentation and characterization in multiparametric MRI

Author:

Zhu Jingjin,Geng Jiahui,Shan Wei,Zhang Boya,Shen Huaqing,Dong Xiaohan,Liu Mei,Li Xiru,Cheng Liuquan

Abstract

ImportanceThe utilization of artificial intelligence for the differentiation of benign and malignant breast lesions in multiparametric MRI (mpMRI) assists radiologists to improve diagnostic performance.ObjectivesTo develop an automated deep learning model for breast lesion segmentation and characterization and to evaluate the characterization performance of AI models and radiologists.Materials and methodsFor lesion segmentation, 2,823 patients were used for the training, validation, and testing of the VNet-based segmentation models, and the average Dice similarity coefficient (DSC) between the manual segmentation by radiologists and the mask generated by VNet was calculated. For lesion characterization, 3,303 female patients with 3,607 pathologically confirmed lesions (2,213 malignant and 1,394 benign lesions) were used for the three ResNet-based characterization models (two single-input and one multi-input models). Histopathology was used as the diagnostic criterion standard to assess the characterization performance of the AI models and the BI-RADS categorized by the radiologists, in terms of sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (AUC). An additional 123 patients with 136 lesions (81 malignant and 55 benign lesions) from another institution were available for external testing.ResultsOf the 5,811 patients included in the study, the mean age was 46.14 (range 11–89) years. In the segmentation task, a DSC of 0.860 was obtained between the VNet-generated mask and manual segmentation by radiologists. In the characterization task, the AUCs of the multi-input and the other two single-input models were 0.927, 0.821, and 0.795, respectively. Compared to the single-input DWI or DCE model, the multi-input DCE and DWI model obtained a significant increase in sensitivity, specificity, and accuracy (0.831 vs. 0.772/0.776, 0.874 vs. 0.630/0.709, 0.846 vs. 0.721/0.752). Furthermore, the specificity of the multi-input model was higher than that of the radiologists, whether using BI-RADS category 3 or 4 as a cutoff point (0.874 vs. 0.404/0.841), and the accuracy was intermediate between the two assessment methods (0.846 vs. 0.773/0.882). For the external testing, the performance of the three models remained robust with AUCs of 0.812, 0.831, and 0.885, respectively.ConclusionsCombining DCE with DWI was superior to applying a single sequence for breast lesion characterization. The deep learning computer-aided diagnosis (CADx) model we developed significantly improved specificity and achieved comparable accuracy to the radiologists with promise for clinical application to provide preliminary diagnoses.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3