Radiomics Nomogram Improves the Prediction of Epilepsy in Patients With Gliomas

Author:

Jie Bai,Hongxi Yang,Ankang Gao,Yida Wang,Guohua Zhao,Xiaoyue Ma,Chenglong Wang,Haijie Wang,Xiaonan Zhang,Guang Yang,Yong Zhang,Jingliang Cheng

Abstract

PurposeTo investigate the association between clinic-radiological features and glioma-associated epilepsy (GAE), we developed and validated a radiomics nomogram for predicting GAE in WHO grade II~IV gliomas.MethodsThis retrospective study consecutively enrolled 380 adult patients with glioma (266 in the training cohort and 114 in the testing cohort). Regions of interest, including the entire tumor and peritumoral edema, were drawn manually. The semantic radiological characteristics were assessed by a radiologist with 15 years of experience in neuro-oncology. A clinic-radiological model, radiomic signature, and a combined model were built for predicting GAE. The combined model was visualized as a radiomics nomogram. The AUC was used to evaluate model classification performance, and the McNemar test and Delong test were used to compare the performance among the models. Statistical analysis was performed using SPSS software, and p < 0.05 was regarded as statistically significant.ResultsThe combined model reached the highest AUC with the testing cohort (training cohort, 0.911 [95% CI, 0.878–0.942]; testing cohort, 0.866 [95% CI, 0.790–0.929]). The McNemar test revealed that the differences among the accuracies of the clinic-radiological model, radiomic signature, and combined model in predicting GAE in the testing cohorts (p > 0.05) were not significantly different. The DeLong tests showed that the difference between the performance of the radiomic signature and the combined model was significant (p < 0.05).ConclusionThe radiomics nomogram predicted seizures in patients with glioma non-invasively, simply, and practically. Compared with the radiomics models, comprehensive clinic-radiological imaging signs observed by the naked eye have non-discriminatory performance in predicting GAE.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3