Differential Private Deep Learning Models for Analyzing Breast Cancer Omics Data

Author:

Islam Md. Mohaiminul,Mohammed Noman,Wang Yang,Hu Pingzhao

Abstract

Proper analysis of high-dimensional human genomic data is necessary to increase human knowledge about fundamental biological questions such as disease associations and drug sensitivity. However, such data contain sensitive private information about individuals and can be used to identify an individual (i.e., privacy violation) uniquely. Therefore, raw genomic datasets cannot be publicly published or shared with researchers. The recent success of deep learning (DL) in diverse problems proved its suitability for analyzing the high volume of high-dimensional genomic data. Still, DL-based models leak information about the training samples. To overcome this challenge, we can incorporate differential privacy mechanisms into the DL analysis framework as differential privacy can protect individuals’ privacy. We proposed a differential privacy based DL framework to solve two biological problems: breast cancer status (BCS) and cancer type (CT) classification, and drug sensitivity prediction. To predict BCS and CT using genomic data, we built a differential private (DP) deep autoencoder (dpAE) using private gene expression datasets that performs low-dimensional data representation learning. We used dpAE features to build multiple DP binary classifiers to predict BCS and CT in any individual. To predict drug sensitivity, we used the Genomics of Drug Sensitivity in Cancer (GDSC) dataset. We extracted GDSC’s dpAE features to build our DP drug sensitivity prediction model for 265 drugs. Evaluation of our proposed DP framework shows that it achieves improved prediction performance in predicting BCS, CT, and drug sensitivity than the previously published DP work.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3