Machine learning and BP neural network revealed abnormal B cell infiltration predicts the survival of lung cancer patients

Author:

Tu Pinghua,Li Xinjun,Cao Lingli,Zhong Minghua,Xie Zhibin,Wu Zhanling

Abstract

FAM83A gene is related to the invasion and metastasis of various tumors. However, the abnormal immune cell infiltration associated with the gene is poorly understood in the pathogenesis and prognosis of NSCLC. Based on the TCGA and GEO databases, we used COX regression and machine learning algorithms (CIBERSORT, random forest, and back propagation neural network) to study the prognostic value of FAM83A and immune infiltration characteristics in NSCLC. High FAM83A expression was significantly associated with poor prognosis of NSCLC patients (p = 0.00016), and had excellent prognostic independence. At the same time, the expression level of FAM83A is significantly related to the T, N, and Stage. Subsequently, based on machine learing strategies, we found that the infiltration level of naive B cells was negatively correlated with the expression of FAM83A. The low infiltration of naive B cells was significantly related to the poor overall survival rate of NSCLC (p = 0.0072). In addition, Cox regression confirmed that FAM83A and naive B cells are risk factors for the prognosis of NSCLC patients. The nomogram combining FAM83A and naive B cells (C-index = 0.748) has a more accurate prognostic ability than the Stage (C-index = 0.651) system. Our analysis shows that abnormal infiltration of naive B cells associated with FAM83A is a key factor in the prognostic prediction of NSCLC patients.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Reference37 articles.

1. Molecular diagnostics and targeted therapies in non-small cell lung cancer (NSCLC): An update;Jonna;Discovery Med,2019

2. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives;Imyanitov;Crit Rev Oncol Hematol,2021

3. Targeted therapy and immunotherapy for lung cancer;Naylor;Surg Oncol Clin N Am,2016

4. PD-1 and PD-L1 as immunotherapy targets and biomarkers in non-small cell lung cancer;Tsoukalas;J BUON,2019

5. Predictive and prognostic biomarkers in non-small cell lung cancer;Thakur;Semin Respir Crit Care Med,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3