B cells as modulators of HPV+ oropharyngeal cancer in a preclinical model

Author:

Galán-Ortíz Jorge R.,Andino del Valle Kamila A.,Pérez-Rosario Abelardo A.,Castañón Pereira Daniel L.,Díaz-Rivera Jennifer,Merheb-Finianos Pamela A.,Dorta-Estremera Stephanie M.

Abstract

Among the different immune cells present within tumors, B cells also infiltrate human papillomavirus-positive (HPV+) oropharyngeal tumors. However, the role of B cells during programmed death-1 (PD-1) blockade in HPV+ oropharyngeal cancer needs to be better defined. By using the preclinical mouse model for HPV+ oropharyngeal cancer (named mEER), we characterized B cells within tumors and determined their functional role in vivo during PD-1 blockade. We determined that treatment naïve tongue-implanted tumors, which we have previously demonstrated to be sensitive to PD-1 blockade, contained high infiltration of CD8+ T cells and low infiltration of B cells whereas flank-implanted tumors, which are resistant to PD-1 blockade, contain a higher frequency of B cells compared to T cells. Moreover, B cell-deficient mice (µMt) and B cell-depleted mice showed a slower tumor growth rate compared to wild-type (WT) mice, and B cell deficiency increased CD8+ T cell infiltration in tumors. When we compared tongue tumor-bearing mice treated with anti-PD-1, we observed that tumors that responded to the therapy contained more T cells and B cells than the ones that did not respond. However, µMt mice treated with PD-1 blockade showed similar tumor growth rates to WT mice. Our data suggest that in untreated mice, B cells have a more pro-tumorigenic phenotype potentially affecting T cell infiltration in the tumors. In contrast, B cells are dispensable for PD-1 blockade efficacy. Mechanistic studies are needed to identify novel targets to promote the anti-tumorigenic function and/or suppress the immunosuppressive function of B cells in HPV+ oropharyngeal cancer.

Funder

National Institute on Minority Health and Health Disparities

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3