Multiparametric MRI radiomics for predicting disease-free survival and high-risk histopathological features for tumor recurrence in endometrial cancer

Author:

Renton Mary,Fakhriyehasl Mina,Weiss Jessica,Milosevic Michael,Laframboise Stephane,Rouzbahman Marjan,Han Kathy,Jhaveri Kartik

Abstract

BackgroundCurrent preoperative imaging is insufficient to predict survival and tumor recurrence in endometrial cancer (EC), necessitating invasive procedures for risk stratification.PurposeTo establish a multiparametric MRI radiomics model for predicting disease-free survival (DFS) and high-risk histopathologic features in EC.MethodsThis retrospective study included 71 patients with histopathology-proven EC and preoperative MRI over a 10-year period. Clinicopathology data were extracted from health records. Manual MRI segmentation was performed on T2-weighted (T2W), apparent diffusion coefficient (ADC) maps and dynamic contrast-enhanced T1-weighted images (DCE T1WI). Radiomic feature (RF) extraction was performed with PyRadiomics. Associations between RF and histopathologic features were assessed using logistic regression. Associations between DFS and RF or clinicopathologic features were assessed using the Cox proportional hazards model. All RF with univariate analysis p-value < 0.2 were included in elastic net analysis to build radiomic signatures.ResultsThe 3-year DFS rate was 68% (95% CI = 57%-80%). There were no significant clinicopathologic predictors for DFS, whilst the radiomics signature was a strong predictor of DFS (p<0.001, HR 3.62, 95% CI 1.94, 6.75). From 107 RF extracted, significant predictive elastic net radiomic signatures were established for deep myometrial invasion (p=0.0097, OR 4.81, 95% CI 1.46, 15.79), hysterectomy grade (p=0.002, OR 5.12, 95% CI 1.82, 14.45), hysterectomy histology (p=0.0061, OR 18.25, 95% CI 2.29,145.24) and lymphovascular space invasion (p<0.001, OR 5.45, 95% CI 2.07, 14.36).ConclusionMultiparametric MRI radiomics has the potential to create a non-invasive a priori approach to predicting DFS and high-risk histopathologic features in EC.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3