A Prognostic Model of Bladder Cancer Based on Metabolism-Related Long Non-Coding RNAs

Author:

Hu Jintao,Lai Cong,Shen Zefeng,Yu Hao,Lin Junyi,Xie Weibin,Su Huabin,Kong Jianqiu,Han Jinli

Abstract

BackgroundSome studies have revealed a close relationship between metabolism-related genes and the prognosis of bladder cancer. However, the relationship between metabolism-related long non-coding RNAs (lncRNA) regulating the expression of genetic material and bladder cancer is still blank. From this, we developed and validated a prognostic model based on metabolism-associated lncRNA to analyze the prognosis of bladder cancer.MethodsGene expression, lncRNA sequencing data, and related clinical information were extracted from The Cancer Genome Atlas (TCGA). And we downloaded metabolism-related gene sets from the human metabolism database. Differential expression analysis is used to screen differentially expressed metabolism-related genes and lncRNAs between tumors and paracancer tissues. We then obtained metabolism-related lncRNAs associated with prognosis by correlational analyses, univariate Cox analysis, and logistic least absolute shrinkage and selection operator (LASSO) regression. A risk scoring model is constructed based on the regression coefficient corresponding to lncRNA calculated by multivariate Cox analysis. According to the median risk score, patients were divided into a high-risk group and a low-risk group. Then, we developed and evaluated a nomogram including risk scores and Clinical baseline data to predict the prognosis. Furthermore, we performed gene-set enrichment analysis (GSEA) to explore the role of these metabolism-related lncRNAs in the prognosis of bladder cancer.ResultsBy analyzing the extracted data, our research screened out 12 metabolism-related lncRNAs. There are significant differences in survival between high and low-risk groups divided by the median risk scoring model, and the low-risk group has a more favorable prognosis than the high-risk group. Univariate and multivariate Cox regression analysis showed that the risk score was closely related to the prognosis of bladder cancer. Then we established a nomogram based on multivariate analysis. After evaluation, the modified model has good predictive efficiency and clinical application value. Furthermore, the GSEA showed that these lncRNAs affected bladder cancer prognosis through multiple links.ConclusionsA predictive model was established and validated based on 12 metabolism-related lncRNAs and clinical information, and we found these lncRNA affected bladder cancer prognosis through multiple links.

Funder

Science and Technology Planning Project of Guangdong Province

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3