Application of machine learning in the prediction of deficient mismatch repair in patients with colorectal cancer based on routine preoperative characterization

Author:

Xu Dong,Chen Rujie,Jiang Yu,Wang Shuai,Liu Zhiyu,Chen Xihao,Fan Xiaoyan,Zhu Jun,Li Jipeng

Abstract

Simple summaryDetecting deficient mismatch repair (dMMR) in patients with colorectal cancer is essential for clinical decision-making, including evaluation of prognosis, guidance of adjuvant chemotherapy and immunotherapy, and primary screening for Lynch syndrome. However, outside of tertiary care centers, existing detection methods are not widely disseminated and highly depend on the experienced pathologist. Therefore, it is of great clinical significance to develop a broadly accessible and low-cost tool for dMMR prediction, particularly prior to surgery. In this study, we developed a convenient and reliable model for predicting dMMR status in CRC patients on routine preoperative characterization utilizing multiple machine learning algorithms. This model will work as an automated screening tool for identifying patients suitable for mismatch repair testing and consequently for improving the detection rate of dMMR, while reducing unnecessary labor and cost in patients with proficient mismatch repair.BackgroundDeficient mismatch repair (dMMR) indicates a sustained anti-tumor immune response and has a favorable prognosis in patients with colorectal cancer (CRC). Although all CRC patients are recommended to undergo dMMR testing after surgery, current diagnostic approaches are not available for all country hospitals and patients. Therefore, efficient and low-cost predictive models for dMMR, especially for preoperative evaluations, are warranted.MethodsA large scale of 5596 CRC patients who underwent surgical resection and mismatch repair testing were enrolled and randomly divided into training and validation cohorts. The clinical features exploited for predicting dMMR comprised the demographic characteristics, preoperative laboratory data, and tumor burden information. Machine learning (ML) methods involving eight basic algorithms, ensemble learning methods, and fusion algorithms were adopted with 10-fold cross-validation, and their performance was evaluated based on the area under the receiver operating characteristic curve (AUC) and calibration curves. The clinical net benefits were assessed using a decision curve analysis (DCA), and a nomogram was developed to facilitate model clinical practicality.ResultsAll models achieved an AUC of nearly 0.80 in the validation cohort, with the stacking model exhibiting the best performance (AUC = 0.832). Logistical DCA revealed that the stacking model yielded more clinical net benefits than the conventional regression models. In the subgroup analysis, the stacking model also predicted dMMR regardless of the clinical stage. The nomogram showed a favorable consistence with the actual outcome in the calibration curve.ConclusionWith the aid of ML algorithms, we developed a novel and robust model for predicting dMMR in CRC patients with satisfactory discriminative performance and designed a user-friendly and convenient nomogram.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3