Low MxA Expression Predicts Better Immunotherapeutic Outcomes in Glioblastoma Patients Receiving Heat Shock Protein Peptide Complex 96 Vaccination

Author:

Wang Yi,Li Chunzhao,Chi Xiaohan,Huang Xijian,Gao Hua,Ji Nan,Zhang Yang

Abstract

Heat shock protein peptide complex 96 (HSPPC-96) has been proven to be a safe and preliminarily effective therapeutic vaccine in treating newly diagnosed glioblastoma multiforme (GBM) (NCT02122822). However, the clinical outcomes were highly variable, rendering the discovery of outcome-predictive biomarkers essential for this immunotherapy. We utilized multidimensional immunofluorescence staining to detect CD4+ CD8+ and PD-1+ immune cell infiltration levels, MxA and gp96 protein expression in pre-vaccination GBM tissues of 19 patients receiving HSPPC-96 vaccination. We observed low MxA expression was associated with longer OS than high MxA expression (48 months vs. 20 months, p=0.038). Long-term survivors (LTS) exhibited significantly lower MxA expression than short-term survivors (STS) (p= 0.0328), and ROC curve analysis indicated MxA expression as a good indicator in distinguishing LTS and STS (AUC=0.7955, p=0.0318). However, we did not observe any significant impact of immune cell densities or gp96 expression on patient outcomes. Finally, we revealed the association of MxA expression with prognosis linked to a preexisting TCR clone (CDR3-2) but was independent of the peripheral tumor-specific immune response. Taken together, low MxA expression correlated with better survival in GBM patients receiving HSPPC-96 vaccination, indicating MxA as a potential biomarker for early recognition of responsive patients to this immunotherapy.Clinical Trial Registration: ClinicalTrials.gov (NCT02122822) http://www. chictr.org.cn/enindex.aspx (ChiCTR-ONC-13003309).

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat‐Shock Proteins;Current Protocols;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3