Can a Computer-Aided Mass Diagnosis Model Based on Perceptive Features Learned From Quantitative Mammography Radiology Reports Improve Junior Radiologists’ Diagnosis Performance? An Observer Study

Author:

He Zilong,Li Yue,Zeng Weixiong,Xu Weimin,Liu Jialing,Ma Xiangyuan,Wei Jun,Zeng Hui,Xu Zeyuan,Wang Sina,Wen Chanjuan,Wu Jiefang,Feng Chenya,Ma Mengwei,Qin Genggeng,Lu Yao,Chen Weiguo

Abstract

Radiologists’ diagnostic capabilities for breast mass lesions depend on their experience. Junior radiologists may underestimate or overestimate Breast Imaging Reporting and Data System (BI-RADS) categories of mass lesions owing to a lack of diagnostic experience. The computer-aided diagnosis (CAD) method assists in improving diagnostic performance by providing a breast mass classification reference to radiologists. This study aims to evaluate the impact of a CAD method based on perceptive features learned from quantitative BI-RADS descriptions on breast mass diagnosis performance. We conducted a retrospective multi-reader multi-case (MRMC) study to assess the perceptive feature-based CAD method. A total of 416 digital mammograms of patients with breast masses were obtained from 2014 through 2017, including 231 benign and 185 malignant masses, from which we randomly selected 214 cases (109 benign, 105 malignant) to train the CAD model for perceptive feature extraction and classification. The remaining 202 cases were enrolled as the test set for evaluation, of which 51 patients (29 benign and 22 malignant) participated in the MRMC study. In the MRMC study, we categorized six radiologists into three groups: junior, middle-senior, and senior. They diagnosed 51 patients with and without support from the CAD model. The BI-RADS category, benign or malignant diagnosis, malignancy probability, and diagnosis time during the two evaluation sessions were recorded. In the MRMC evaluation, the average area under the curve (AUC) of the six radiologists with CAD support was slightly higher than that without support (0.896 vs. 0.850, p = 0.0209). Both average sensitivity and specificity increased (p = 0.0253). Under CAD assistance, junior and middle-senior radiologists adjusted the assessment categories of more BI-RADS 4 cases. The diagnosis time with and without CAD support was comparable for five radiologists. The CAD model improved the radiologists’ diagnostic performance for breast masses without prolonging the diagnosis time and assisted in a better BI-RADS assessment, especially for junior radiologists.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3