Survival Prediction in Gallbladder Cancer Using CT Based Machine Learning

Author:

Liu Zefan,Zhu Guannan,Jiang Xian,Zhao Yunuo,Zeng Hao,Jing Jing,Ma Xuelei

Abstract

ObjectiveTo establish a classifier for accurately predicting the overall survival of gallbladder cancer (GBC) patients by analyzing pre-treatment CT images using machine learning technology.MethodsThis retrospective study included 141 patients with pathologically confirmed GBC. After obtaining the pre-treatment CT images, manual segmentation of the tumor lesion was performed and LIFEx package was used to extract the tumor signature. Next, LASSO and Random Forest methods were used to optimize and model. Finally, the clinical information was combined to accurately predict the survival outcomes of GBC patients.ResultsFifteen CT features were selected through LASSO and random forest. On the basis of relative importance GLZLM-HGZE, GLCM-homogeneity and NGLDM-coarseness were included in the final model. The hazard ratio of the CT-based model was 1.462(95% CI: 1.014–2.107). According to the median of risk score, all patients were divided into high and low risk groups, and survival analysis showed that high-risk groups had a poor survival outcome (P = 0.012). After inclusion of clinical factors, we used multivariate COX to classify patients with GBC. The AUC values in the test set and validation set for 3 years reached 0.79 and 0.73, respectively.ConclusionGBC survival outcomes could be predicted by radiomics based on LASSO and Random Forest.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Reference21 articles.

1. Gallbladder cancer: epidemiology and outcome;Hundal;Clin Epidemiol,2014

2. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute;Cronin;Cancer,2014

3. Gallbladder Cancer Incidence and Mortality, United States 1999-2011;Henley;Cancer Epidem Biomar,2015

4. Surgical treatment of gallbladder carcinoma: a critical review;Kakaei;Updates Surg,2015

5. Bile duct involvement portends poor prognosis in resected gallbladder carcinoma;Eil;Gastrointest Cancer Res,2013

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3