PSMD2 promotes the progression of bladder cancer and is correlated with immune infiltration

Author:

Wang Song,Wang He,Zhu Shaoxing,Wang Zongping

Abstract

IntroductionPSMD2 plays an oncogenic role in multiple human malignancies, while it is still unclear that the potential roles and underlying mechanisms of PSMD2 in BCa.MethodsThe RNA-seq from TCGA and GTEx database was utilized to preliminarily analyze the expression of PSMD2 in BCa tissues, qRT-PCR was adopted to verify the PSMD2 expression in BCa cell lines. Cox regression analyses were applied to assess the prognostic values of PSMD2 in BCa. GSEA analysis was used to explore the underlying mechanisms of PSMD2. In vitro assays such as wound healing and colony formation assays were applied to determine the carcinogenesis of PSMD2 in BCa. xCell and ssGSEA algorithms were applied to analyze the associations of PSMD2 with TIME.ResultsThe results revealed that in comparison with normal bladder tissues and cell line, PSMD2 was found to be significantly elevated in BCa tissues and cell lines. Elevated expression of PSMD2 can independently predict unfavorable OS for BCa patients. The PSMD2 expression and other clinicopathologic factors were combined to develop a nomogram, which can help to predict OS for BCa patients. GSEA analyses revealed that PSMD2 is correlated with the cell cycle, antigen processing and presentation, JAK-STAT signaling pathway, Toll like receptor signaling pathway, P53 and MAPK signaling pathway. Knockdown of PSMD2 could remarkably inhibit the wound healing and colony formation efficiency of BCa cells. xCell analysis revealed that overexpressed PSMD2 is positively related to the Th2 cells infiltrates and expression levels of immune escape markers, and negatively associated with the infiltrating levels of NK T cell and CD8+ T cell.DiscussionIn conclusion, overexpressed PSMD2 is tightly linked to the immune infiltrates and promotes the progression of BCa.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3