Neighborhood attention transformer multiple instance learning for whole slide image classification

Author:

Aftab Rukhma,Yan Qiang,Zhao Juanjuan,Yong Gao,Huajie Yue,Urrehman Zia,Mohammad Khalid Faizi

Abstract

IntroductionPathologists rely on whole slide images (WSIs) to diagnose cancer by identifying tumor cells and subtypes. Deep learning models, particularly weakly supervised ones, classify WSIs using image tiles but may overlook false positives and negatives due to the heterogeneous nature of tumors. Both cancerous and healthy cells can proliferate in patterns that extend beyond individual tiles, leading to errors at the tile level that result in inaccurate tumor-level classifications.MethodsTo address this limitation, we introduce NATMIL (Neighborhood Attention Transformer Multiple Instance Learning), which utilizes the Neighborhood Attention Transformer to incorporate contextual dependencies among WSI tiles. NATMIL enhances multiple instance learning by integrating a broader tissue context into the model. Our approach enhances the accuracy of tumor classification by considering the broader tissue context, thus reducing errors associated with isolated tile analysis.ResultsWe conducted a quantitative analysis to evaluate NATMIL’s performance against other weakly supervised algorithms. When applied to subtyping non-small cell lung cancer (NSCLC) and lymph node (LN) tumors, NATMIL demonstrated superior accuracy. Specifically, NATMIL achieved accuracy values of 89.6% on the Camelyon dataset and 88.1% on the TCGA-LUSC dataset, outperforming existing methods. These results underscore NATMIL’s potential as a robust tool for improving the precision of cancer diagnosis using WSIs.DiscussionOur findings demonstrate that NATMIL significantly improves tumor classification accuracy by reducing errors associated with isolated tile analysis. The integration of contextual dependencies enhances the precision of cancer diagnosis using WSIs, highlighting NATMILs´ potential as a robust tool in pathology.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3