Improving Source Apportionment of Urban Aerosol Using Multi-Isotopic Fingerprints (MIF) and Positive Matrix Factorization (PMF): Cross-Validation and New Insights

Author:

Souto-Oliveira Carlos Eduardo,Kamigauti Leonardo Yoshiaki,Andrade Maria de Fatima,Babinski Marly

Abstract

Urban air pollution is a matter of concern due to its health hazards and the continuous population growth exposed to it at different urban areas worldwide. Nowadays, more than 55% of the world population live in urban areas. One of the main challenges to guide pollution control policies is related to pollutant source assessment. In this line, U.S. Environmental Protection Agency's Positive Matrix Factorization (EPA-PMF) has been extensively employed worldwide as a reference model for quantification of source contributions. However, EPA-PMF presents issues associated to source identification and discrimination due to the collinearities among the source tracers. Multi-Isotopic Fingerprints (MIF) have demonstrated good resolution for source discrimination, since urban sources are characterized by specific isotopic signatures. Source quantification based on total aerosol mass is the main limitation of MIF. This study reports strategies for PMF and MIF combination to improve source identification/discrimination and its quantification in urban areas. We have three main findings: (1) cross-validation of PMF source identification based on Pb and Zn isotopic fingerprints, (2) source apportionment in the MIF model for total PM mass, and (3) new insights into potential Zn isotopic signatures of biomass burning and secondary aerosol. We support future studies on the improvement of isotopic fingerprints database of sources based on diverse elements or compounds to boost advances of MIF model applications in atmospheric sciences.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3