Lightweight land cover classification via semantic segmentation of remote sensing imagery and analysis of influencing factors

Author:

Wang Guoying,Chen Jiahao,Mo Lufeng,Wu Peng,Yi Xiaomei

Abstract

Land cover classification is of great value and can be widely used in many fields. Earlier land cover classification methods used traditional image segmentation techniques, which cannot fully and comprehensively extract the ground information in remote sensing images. Therefore, it is necessary to integrate the advanced techniques of deep learning into the study of semantic segmentation of remote sensing images. However, most of current high-resolution image segmentation networks have disadvantages such as large parameters and high network training cost. In view of the problems above, a lightweight land cover classification model via semantic segmentation, DeepGDLE, is proposed in this paper. The model DeepGDLE is designed on the basis of DeeplabV3+ network and utilizes the GhostNet network instead of the backbone feature extraction network in the encoder. Using Depthwise Separable Convolution (DSC) instead of dilation convolution. This reduces the number of parameters and increases the computational speed of the model. By optimizing the dilation rate of parallel convolution in the ASPP module, the “grid effect” is avoided. ECANet lightweight channel attention mechanism is added after the feature extraction module and the pyramid pooling module to focus on the important weights of the model. Finally, the loss function Focal Loss is utilized to solve the problem of category imbalance in the dataset. As a result, the model DeepGDLE effectively reduces the parameters of the network model and the network training cost. And extensive experiments compared with several existing semantic segmentation algorithms such as DeeplabV3+, UNet, SegNet, etc. show that DeepGDLE improves the quality and efficiency of image segmentation. Therefore, compared to other networks, the DeepGDLE network model can be more effectively applied to land cover classification. In addition, in order to investigate the effects of different factors on the semantic segmentation performance of remote sensing images and to verify the robustness of the DeepGDLE model, a new remote sensing image dataset, FRSID, is constructed in this paper. This dataset takes into account more influences than the public dataset. The experimental results show that on the WHDLD dataset, the experimental metrics mIoU, mPA, and mRecall of the proposed model, DeepGDLE, are 62.29%, 72.85%, and 72.46%, respectively. On the FRSID dataset, the metrics mIoU, mPA, and mRecall are 65.89%, 74.43%, and 74.08%, respectively. For the future scope of research in this field, it may focus on the fusion of multi-source remote sensing data and the intelligent interpretation of remote sensing images.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3