Deep Learning Detection and Recognition of Spot Elevations on Historical Topographic Maps

Author:

Arundel Samantha T.,Morgan Trenton P.,Thiem Phillip T.

Abstract

Some information contained in historical topographic maps has yet to be captured digitally, which limits the ability to automatically query such data. For example, U.S. Geological Survey’s historical topographic map collection (HTMC) displays millions of spot elevations at locations that were carefully chosen to best represent the terrain at the time. Although research has attempted to reproduce these data points, it has proven inadequate to automatically detect and recognize spot elevations in the HTMC. We propose a deep learning workflow pretrained using large benchmark text datasets. To these datasets we add manually crafted training image/label pairs, and test how many are required to improve prediction accuracy. We find that the initial model, pretrained solely with benchmark data, fails to predict any HTMC spot elevations correctly, whereas the addition of just 50 custom image/label pairs increases the predictive ability by ∼50%, and the inclusion of 350 data pairs increased performance by ∼80%. Data augmentation in the form of rotation, scaling, and translation (offset) expanded the size and diversity of the training dataset and vastly improved recognition accuracy up to ∼95%. Visualization methods, such as heat map generation and salient feature detection, can be used to better understand why some predictions fail.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference57 articles.

1. OCR Enters the Practical Stage;Andersson;Datamation,1971

2. Presence-only Geographical Priors for fine-grained Image Classification;Aodha,2019

3. GeoNat v1.0: A Dataset for Natural Feature Mapping with Artificial Intelligence and Supervised Learning;Arundel;Trans. GIS,2020

4. Automated Location Correction and Spot Height Generation for Named Summits in the Coterminous United States;Arundel;Int. J. Digital Earth,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dataset of building locations in Poland in the 1970s and 1980s;Scientific Data;2024-04-05

2. Cross-attention Spatio-temporal Context Transformer for Semantic Segmentation of Historical Maps;Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3