Effects of riparian buffer and stream channel widths on ecological indicators in the upper and lower Indus River basins in Pakistan

Author:

Hira Amin,Arif Muhammad,Zarif Nowsherwan,Gul Zarmina,Xiangyue Liu,Yukun Cao

Abstract

Riparian buffers and stream channel widths along river networks have extremely significant ecological influences on parameters and stressors associated with riparian health indicators (RHIs). It is imperative for countries that rely heavily on rivers for irrigation to protect RHIs such as habitat, plant cover, regeneration, exotics, and erosion. It is unclear which protection methods are most effective for RHIs in less developed countries, such as Pakistan. This study fills this gap by using a quick field-based technique that includes 273 transects and examines the response of RHIs in the upper and lower Indus River basins (IRB). In the lower Indus basin (LIB), riparian buffer and stream channel widths had the most considerable influence on RHIs using Pearson’s correlations, ranging from ̶ 0.47 < r < 0.71 and ̶ 0.41 < r < 0.32, respectively. There was a significant relationship between stressors and RHIs in the LIB when these widths were changed, and stressors had a significant influence on habitat ̶ 0.37 < r < 0.41, plant cover ̶ 0.32 < r < 0.38, regeneration ̶ 0.29 < r < 0.25, erosion ̶ 0.34 < r < 0.49, and exotics ̶ 0.39 < r < 0.24. In contrast, these stressors in the upper Indus basin (UIB) also adversely affected habitat ̶ 0.28 < r < 0.27, plant cover ̶ 0.34 < r < 0.26, regeneration ̶ 0.19 < r < 0.26, erosion ̶ 0.38 < r < 0.23, and exotics ̶ 0.31 < r < 0.30. It was found from the principal component analysis that the responses of RHIs and stressors varied considerably between the UIB and LIB. Additionally, the agglomerative hierarchical cluster analysis of the RHIs and stressor indices revealed dissimilarities in the UIB and LIB. This study supports the need to examine riparian regions along long rivers, which are subject to the same administrative strategies. Large river ecosystems need revised standards to prevent further degradation based on ecological indicators.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3