We cannot turn back time: a framework for restoring and repairing rivers in the Anthropocene

Author:

Greene Rachel H.,Thoms Martin C.,Parsons Melissa

Abstract

Restoration activities commonly aim to reverse the impacts of environmental degradation and return a system back to an original, “pre-disturbance” condition. Is this realistic, achievable, or reflective of an unconscious bias in the Anthropocene, the current geological epoch where human disturbances dominate ecosystems? Billions of dollars are invested into river restoration globally each year, but there are limited empirical data to evaluate river recovery after these activities. Current response models, typically based on concepts of equilibrium and stability, assume rivers return to pre-disturbance conditions by removing or ameliorating a disturbance or stressor. Conceptual frameworks are useful tools to order phenomena and material, and understand patterns and processes in data-limited situations. A framework for the recovery of rivers in the Anthropocene is presented. The framework includes components of resilience thinking, landscape ecology, and river science. It is proposed that rivers in the Anthropocene have metamorphosed to a different basin of attraction (regime/state) displaying alternative functions, structures, and interactions. Resilience thinking suggests that once a river moves beyond the Anthropocene tipping point, recovery to its original state is not possible. If a river system cannot be returned to its original state, it must be repaired to something else. Using principles of landscape ecology for restoring structural and functional heterogeneity the capacity of Anthropocene rivers to withstand current and future disturbances would be enhanced. River science recognizes the significance of physical heterogeneity at multiple scales, resulting in differences in sensitivities to disturbance and associated recovery trajectories. All of these should guide the selection of river restoration activity types at given locations within a river network.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference146 articles.

1. Geomorphic, engineering, and ecological considerations when using wood in river restoration;Abbe,2011

2. Beyond the concrete: Accounting for ecosystem services from free-flowing rivers;Auerbach;Ecosyst. Serv.,2014

3. A process-based assessment of landscape change and salmon habitat losses in the Chehalis River basin, USA;Beechie;PLoS ONE,2021

4. Watershed processes, human impacts, and process-based restoration;Beechie,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3