Spatial–Temporal Pattern and Influencing Factors of Drought Impacts on Agriculture in China

Author:

Deng Xiyuan,Wang Guoqing,Yan Haofang,Zheng Jintao,Li Xuegang

Abstract

Agricultural drought disaster is a major natural disaster affecting economic and social development. It is of significance to investigate the spatial–temporal pattern and the dominant influence of natural and human factors on agricultural drought disasters for drought hazard relief. In this study, Mann–Kendall test was adopted to explore the evolution of agricultural drought disasters. Random forest algorithm, which integrates feature importance and accumulated local effects plot, was applied to quantify the effect of principal influencing factors on agricultural drought disasters. Results show that over the period from 1950 to 2019, agricultural drought disasters in China have undergone significant fluctuations. The spatial pattern of agricultural drought disaster tends to decrease in severity from north to south. The total sown area of crops, precipitation, effective irrigation area, domestic patent application authorization, and regional GDP are the top 5 dominant factors influencing agricultural drought disasters. It also found that agricultural drought disaster negatively correlates with precipitation, domestic patent application authorization, and regional GDP, and the nonlinear response of agricultural drought disaster to total sown area of crops and effective irrigation area can be basically divided into two stages. In the first stage, with the increase of feature value, agricultural drought disaster is also increasing. In the second stage, with the increase of feature value, agricultural drought disaster is growing slow or just decreasing. The results can deepen the understanding of agricultural drought disasters and provide scientific basis for drought event monitoring, evaluation, and early warning.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference61 articles.

1. Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models ApleyD. W. ZhuJ. Y. 2016

2. Drought Analysis with Machine Learning Methods;Başakın;Pamukkale J. Eng. Sci.,2019

3. Streamflow Sensitivity to Water Storage Changes across Europe, European Geosciences Union General Assembly;Berghuijs;Geophys. Res. Lett.,2016

4. Estimating Drought Risk across Europe from Reported Drought Impacts, Drought Indices, and Vulnerability Factors;Blauhut;Hydrol. Earth Syst. Sci.,2016

5. Random Forests;Breiman;Machine Learn.,2001

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3