The impacts of digital value chain embeddedness on trade-related carbon emissions intensity

Author:

Lyu Yanfang,Xiang Yun,Wang Dong

Abstract

Objective: Digitalization supported by digital technology presents a potential solution for improving the efficiency of resource utilization. However, the impacts of digitalization on trade-related carbon emissions intensity have not been studied systematically.Methods: Based on panel data of 41 countries and regions over the period 2000–2014, this study examines how different types of digital value chain embeddedness can affect carbon emissions intensity using a semi-parametric partially linear model.Results: Research findings indicate that there is an inverted U-shaped relationship between digital domestic value chain embeddedness and carbon emissions intensity embodied in domestic trade; only when digitalization reaches a threshold of approximately 0.88, does the effects on carbon emissions intensity become negative. In addition, the impacts of digital global value chain embeddedness on carbon emissions intensity embodied in import trade and export trade are recognized as being non-linear; the thresholds of digitalization are approximately 0.1 and 0.3 for import trade and approximately 0.03 and 0.21 for export trade. Although participating in global value chains is conducive to accelerating digital technology diffusion, the actual environmental effects are constrained by a country’s absorptive capacity and high economic system complexity. Compared with developed countries, developing countries lag behind in entering the downward stage of the inverted U-shaped curve, thereby gaining environmental benefits from digital value chain embeddedness. Moreover, in terms of utilizing digital value chain embeddedness to improve energy efficiency, measures include optimizing trade conditions, adjusting energy structure, and increasing trade scale, which can play an active role.Value: This study sheds light on the exploration of the potential of digitalization and the facilitation of economic development in a more environmentally friendly manner.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3