UAVs for improving seasonal vegetation assessment in arid environments

Author:

Abdullah Meshal M.,Al-Ali Zahraa M.,Blanton Austin,Charabi Yassine,Abulibdeh Ammar,Al-Awadhi Talal,Srinivasan Shruthi,Fadda Eyad,Mohan Midhun

Abstract

In the last few decades, revegetation strategies for ecosystem restoration have received great attention in dryland studies, especially those related to the restoration and revegetation of native desert plants to combat land degradation. Long-term monitoring and assessment are critical for the restoration programs to track the progress of the restoration program goals. The effectiveness and success of monitoring depend on the selected methods with respect to spatial and temporal scales. Traditional methods for vegetation monitoring are time-consuming, expensive, and require considerable labor efforts (manpower) in terms of field measurements, collecting samples, lab analysis, and the difficulty of accessing some study areas. Thus, satellite remote sensing images have been widely used to monitor land degradation and restoration programs using multispectral and hyperspectral sensors and indices such as NDVI, which is the most popular index for vegetation monitoring. However, such techniques showed many limitations when used in arid ecosystems, especially for seasonal vegetation assessments, which could mislead the monitoring and assessment of the restoration projects. This paper discusses lessons learned from previous research work, including the limitations of using satellite remote sensing in arid ecosystems and the use of UAV methods to overcome these issues and challenges to provide more accurate outcomes for seasonal assessment of vegetation in arid landscapes.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3