Phase-Resolved Lockdown Features of Pollution Parameters Over an Urban and Adjoining Rural Region During COVID-19

Author:

Sonbawne Sunil M.,Fadnavis Suvarna,Vijayakumar K.,Devara Panuganti C. S.,Chavan Prashant

Abstract

In this study, we investigate the temporal variations in columnar aerosol pollutants and their possible association with the simultaneously measured black carbon (BC) aerosol mass concentration and associated biomass burning (BB) over urban (Delhi) and rural (Panchgaon) sites during the lockdown phases of the COVID-19 pandemic. We also show the impact of lockdown measures on boundary layer ozone and its primary precursors, NO2, and water vapor (H2O), potent greenhouse gases that destroy protective ozone. For this purpose, we used multiple datasets, namely, black carbon (BC) aerosol mass concentration and biomass burning (BB) aerosols using an aethalometer at Amity University Haryana (AUH), Panchgaon, India, and satellite retrievals from NASA’s MODIS and OMI at both the stations. The analysis was conducted during the pre-lockdown period (1–25 March), lockdown 1st phase (25 March–14 April), lockdown 2nd phase (15 April–3 May), lockdown 3rd phase (4–17 May), lockdown 4th phase (18–31 May), and post-lockdown (1–30 June) period in 2020. Our diagnostic analysis shows a substantial reduction in AOD (Delhi: −20% to −80%, Panchgaon: −20% to −80%) and NO2 (Delhi: −10% to −42.03%, Panchgaon −10% to −46.54%) in comparison with climatology (2010–2019) during all four phases of lockdown. The reduction in AOD is attributed to lockdown measures and less transport of dust from west Asia than climatology. Despite a reduction in NO2, there is an increase in the ozone amount (Delhi: 1% to 8% and Panchgaon: 1% to 10%) during lockdown I, II, and III phases. The observed enhancement in ozone may be resultant from the complex photochemical processes that involve the presence of NO2, CO, volatile organic compounds (VOCs), and water vapor. The reduction in AOD and NO2 and enhancement in ozone are stronger at the rural site, Panchgaon than that at the urban site, Delhi.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3