Study on Advanced Nitrogen Removal and Microbial Community Structure of Traditional Chinese Medicine Wastewater by a Novel System Coupling Anaerobic Sequencing Batch Reactor and Modified Sequencing Batch Biofilm Reactor

Author:

Wang Kai,Jiang Jinfeng,Ma Liang,Zheng Liwen,Zhang Guangyuan,Wu Daoji

Abstract

To improve the efficiency of nitrogen removal from pharmaceutical wastewater, wastewater from traditional Chinese medicine was treated in an anaerobic sequencing batch reactor (ASBR) combined with a modified sequencing batch biofilm reactor (SBBR). The chemical oxygen demand (COD) and total nitrogen (TN) contents were 3,750 ± 50 mg/L and 210 ± 10 mg/L, respectively. After 99 days of start-up and domestication, the COD, NH4+-N, and TN contents in the effluent were 230 ± 10 mg/L, 1 ± 0.5 mg/L, and 5 ± 3 mg/L, respectively, and the removal efficiencies reached more than 93.5, 99, and 96%, respectively. Among these results, the COD removal efficiency in traditional Chinese medicine wastewater with an ASBR reached more than 85%, and the effluent and raw water were mixed to adjust the C/N ratio in the SBBR influent. The initial operation mode of the improved SBBR was anaerobic–aerobic–anoxic. When the C/N ratio in the influent was adjusted to 5, the simultaneous nitrification and denitrification (SND) in the aerobic section was gradually enhanced, and the endogenous denitrification (ED) in the anoxic section gradually decreased. In conclusion, deep denitrification of the system was achieved only through SND, and the running time of the cycle was shortened from the initial 24 to 4.6 h. High-throughput sequencing analysis showed that the relative abundances of Bacteroidetes and Proteobacteria in the system were 39.69 and 37.34%, respectively. The content of Firmicutes with denitrification in the system was also high, accounting for 5.17%. At the genus level, the bacteria with denitrification functions in the system were mainly Thauera and unidentified_Sphingobacteriales, accounting for 5.67 and 1.66% of the system, respectively. In addition, there was heterotrophic nitrification–aerobic denitrification (HN-AD) activated in the system, including Denitratisoma, Paracoccus, and Pseudomonas. The total relative abundance of these bacteria was 0.612%. Their existence may be one of the reasons for the good effect of SND in this system.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3