Effect of plot size and precipitation magnitudes on the activation of soil erosion processes using simulated rainfall experiments in vineyards

Author:

Neumann Martin,Kavka Petr,Devátý Jan,Stašek Jakub,Strouhal Luděk,Tejkl Adam,Kubínová Romana,Rodrigo-Comino Jesús

Abstract

Soil erosion is recognized as a threat to humankind and to natural ecosystems when sustainable limits are exceeded. Several researchers have used various tools, such as rainfall simulators, to assess extreme rainfall events and non-sustainable soil management practices. However, combinations of two different devices of different sizes has not been tested before, especially in vineyards. The aim is to verify whether plot size, connectivity processes and rainfall distribution affect the activation of soil erosion. In this research on soils cultivated with vineyards in the Moravia Region in the south-eastern part of the Czech Republic, we have performed various rainfall simulation experiments with a small device (1 × 1 m) and with a large device (8 × 1 m). Our results show that the surface runoff was approximately 30% higher on the small plot than on the large plot. The large rainfall simulator produced sediment concentration that was up to 3 times higher, and soil loss that was up to 1.5 times higher, even when the surface runoff was 30%–50% lower for the large rainfall simulator. We therefore conclude that there is a clear influence of surface length and plot size on surface runoff, soil loss and sediment concentration activation. When planning their experiments, researchers need to consider that the type of device can have a drastic influence on the final results. Two devices subjected to the same rainfall intensity (60 mm h−1) can produce very different results, e.g., depending on plot size and kinetic energy. Our results can be effectively used to plan soil protection measures and to inform local authorities about areas prone to flooding and about loss of sediments.

Funder

Technology Agency of the Czech Republic

Ministerstvo Zemědělství

České Vysoké Učení Technické v Praze

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3