Environmental impact assessment of hemp cultivation and its seed-based food products

Author:

Meffo Kemda Marlyse,Marchi Michela,Neri Elena,Marchettini Nadia,Niccolucci Valentina

Abstract

Introduction: Hemp is a crop cultivated in Europe since ancient times, with a variety of purposes and products. Despite being known for its positive environmental effects on ecosystems, the impacts of hemp-based food products have not been sufficiently investigated yet. This paper contributed to deepen the knowledge of the hemp industry by focusing on the potential environmental impact of the cultivation phase (under three different agronomic practices in Italy: organic outdoor and conventional outdoor, and indoor) and the production of selected hemp-based goods (seed oil and flour for food purposes and flowers for therapeutic uses).Methods: The impact was quantified utilizing the life cycle assessment within different impact categories, such as carbon footprint (CF), eutrophication (EP), acidification (AP), and water footprint (WF). For a carbon offset assessment, the carbon storage capability (i.e., the carbon fixed in crop residues left in the field) of hemp was also investigated through the guidelines provided by the Intergovernmental Panel on Climate Change (IPCC).Results and Discussion: The cultivation phase contributed to a CF that ranged from 1.2 (organic outdoor) to 374 (indoor) kg per kg of grains (conventional outdoor). These results were in line with the literature. Sensitivity scenarios based on hotspot analysis were also presented for CF mitigation for each kind of cultivation. On the other hand, the ability of hemp to sequester carbon in the soil due to crop residues left in the field (i.e., carbon storage) was evaluated (−2.7 kg CO2 (ha year)−1), showing that the CF was fully compensated (−0.27 kg CO2 (ha year)−1 for conventional outdoor and −1.07 kg CO2 (ha year)−1 for organic outdoor). Regarding hemp-based products, only dried flowers showed a negative balance (−0.99 kg CO2 per kg dry flower), while hemp oil and flour reported 31.79 kg CO2 per kg flour) when carbon storage was accounted. The results support the idea that the production chain can be sustainable and carbon-neutral only when all the different parts of the plant (flowers, seeds, fibers, leaves, and all residues) were used to manufacture durable goods according to the framework of the circular economy.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3