Change in phosphorus requirement with increasing grain yield for rice under saline-sodic stress in Northeast China

Author:

Wei Zhanxi,Zhang Yi,Liu Zhanfeng,Peng Mengsu,Wang Teng,Cao Ning

Abstract

It is possible to simultaneously reduce both food security and environmental impact by understanding the relation between rice (Oryza sativa L.) grain yield and phosphorus (P) uptake requirements. The goal of this study was to determine P uptake requirements and relationship of P accumulation with yield formation at different rice grain yield levels under saline-sodic stress. A database comprising measurements in 28 plots in four on-farm research station located in saline-sodic soil area during the period 2018–2019 in Jilin province of Northeast China was used for the analyses. The grain yields of rice averaged 9.0 Mg ha−1 and varied from 5.11 to 13.41 Mg ha−1. The P uptake at late growth stages (heading and maturity) of rice gradually increased with increasing grain yield levels. The P requirement for producing 1 Mg grain (Preq.) were 4.61, 4.60, and 4.21 kg Mg−1 for grain yields ranging from <7.0, 8.0–9.5, and >10.0 Mg ha−1, respectively. The decrease in Preq. values with increasing grain yield was mainly attributable to the increase in the harvest index from 0.25 to 0.33. A larger proportion of the P was accumulated from heading to maturity stage when grain yields were higher than 8.0 Mg ha−1. The P uptake in leaves, stems and panicles at the maturity stage gradually increased with increasing grain yield levels. The results give a contribution to rice production in saline-sodic soils, and greatly optimize P management especially in high-yielding rice systems, furtherly improving food security in the Jilin province of China.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3